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We study the time evolution of the temperature field for small times in the pre- 
sence of a local heat pulse on the surface of a solid. 

In pulse laser processing of materials, heterogeneous chemical reactions, or oxidation 
of metals, a significant quantity of heat is released which can affect the kinetics of 
processes occurring at the surface or close to it. In particular, the formation of vacancies 
in a crystal lattice and the diffusion of impurities depend significantly on the change of 
temperature of the surface induced by the local heat pulse. 

In the description of high intensity transport processes, where the potentials vary 
over a large range, it is necessary to determine accurately the time behavior of the tem- 
perature field during the initial instants of time. This can be done using models ex- 
pressible as differential equations of the hyperbolic type [1-3]. 

We note that the local temperature field on the surface of a crystal subjected to an 
intense pulse source of heat and its effect on the formation of the liquid phase have been 
considered using the approximate (or even incorrect) equations of [4, 5], which were obtained 
in [5] from the solution of an equation of the parabolic type. This type of equation can 
only be used when the propagation velocity of heat is infinite. 

The temperature field induced by a pulse source of heat on the surface of a crystal 
is described by the solution of the generalized heat equation. The finiteness of the pro- 
pagation velocity of heat becomes significant if the time over which the temperature varies 
satisfies the inequality 

L 
�9 < (I) 

V 

The temperature characterizes the equilibrium distribution of phonons, and this distri- 
bution is established after a time tp. Therefore the characteristic time of variatio n of 
the temperature, using (I), must satisfy the condition 

Tp<<T< L-L-. (2) 
v 

In addition, the concept of a temperature changing in time makes sense if it changes 
sufficiently slowly: the equilibrium distributionof phonons is established over a length 
of order 

l = VTp. 
P 

Therefore the spatial scale of the variation in temperature must satisfy the condition 

(3) 

L5)  l r. (4) 
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Fig. I. Variation of local superheating temperature of 
germanium with time for different values of r: curve i, 
r = 10-6; curve 2, r = 10 -5 cm. T, ~ t, sec. 

When the propagation velocity of heat is finite the heat equation has the form 

OT (x, y, z, t) a 02T (x, y,  z, t) ~ - - -  
Ot v ~" Ot ~ 

= a v ~ , v . J  (x, y,  z, t). (5) 

Relations (2) and (4) define the ranges of characteristic times and distance scales where 

(5) is valid. 

We consider a half-space -~ < x, y < ~, z > 0 with the boundary conditions 

T (x, y,  z, /)I t=0= To; ~ OT (x, y, z, l) [ : 
OZ ]z=O 

= - - q  ( x ,  y ,  t )  - -  T r Oq (x ,  y ,  t )  . 
Ot 

OT(x ,  y, z, t) = 0 ;  OT(x ,  y, z, t) [ = 0 .  
Ot t=0 Oz Iz= = 

T a k i n g  t h e  L a p l a c e  t r a n s f o r m  w i t h  r e s p e c t  t o  t we h a v e  

(6) 

S A, . . . .  k2 @ k2 ~- - ~ -  (S - -  TTI) 

• oxp [-z i /  k 2 -~ k} ~- 7 (s -~ TTI ) exp [i (k~x + k~y)l dk,dk~. 

(7) 

We consider the case q(x, y, s) = ~(x)~(y)q(s). Then q(kl, k2, s) = q(s) and the integral 
in (7) can be evaluated exactly. Using the relations: 

00 

f cos (ax) exp [--~ I/~ + x~ ] , 1 
b -V~ ~ + x" 

- dk = Ko Iv - V a - ~  1~1, 

.l" cos (?x) Ko [~z -[/~ q- x ~1 dx ~ exp [--13 -]/~-7---~ 7"], 
o g~ + v ~ 

we obtain 

T ( x ,  g, z, t) To , (l + s T p ) q ( s ) - - v p q o  • 2~ exp[  r - i / s ( s+ .~p l ) ]  
s ~ r v ( 8 )  
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where r = /x 2 + y2 + z 2. 

Inverting the Laplace transform, we obtain for T(x, y, z, t) 

T(x, y, z, t ) =  Toq- o(, r){( , ) zr ~ 5 + x 
l - -  --~-- 

f 

t t 

t 

2 
l 

, - ,  , , _~-(t_x)2]I,(--2-~-) exp (---~.--~--) Io ( - ~ p  V "  -- r 2 , 

(9) 

where Io and Ii are the Bessel functions of imaginary argument, r is the radius of a hemi- 
sphere surrounding the local heat source, and @(t) is the Heaviside unit step function. 
Equation (9) is obtained for the case q(t) = q6(t). 

As an example we consider the iodide method of growing homoepitaxial films of germanium. 
(The thermal conductivity of germanium is due to three different processes: phonon, bipolar, 
and electron. At 600~ the bipolar and electron parts are 2% and 0.1% [6] of the total 
thermal conductivity. Hence for the conditions considered here the thermal conductivity 
of germanium is determined mainly by phonons and therefore the application of the heat 
equation is completely justified.) 

As is well known, in the iodide method the crystal grows via the reaction 

at the surface of the crystal. 
to the data of [7], 

2GeJ2 ~ Ge -7-~ GeJ~ 

The heat of the reaction at constant pressure is, 

(10) 

according 

AH T - 3 2 5 0 0 - -  8T (cal/mole) ( l l )  

We a s s u m e  t h a t  on  a p u r e  g e r m a n i u m  s u r f a c e  a s i n g l e  i n t e r a c t i o n  e v e n t  a c c o r d i n g  to  t h e  
r e a c t i o n  (10)  o c c u r s  a t  t h e  i n i t i a l  t i m e  t = 0 .  A q u a n t i t y  of  h e a t  q = 2 . 0 7 o 1 0  - 19  J i s  
r e l e a s e d ,  w h i c h l e a d s  t o  a l o c a l  i n c r e a s e  i n  t h e  t e m p e r a t u r e  o f  t h e  s u r f a c e .  (The c a l c u l a t i o n  
shows, t h a t  T r e a c  and  Tp a r e  2 . 1 0  -16  s e c  and  2~  - 1 2  s e c ,  r e s p e c t i v e l y ,  so t h a t  T r e a c  << Tp 
and  t h e r e f o r e  we c a n  a p p l y  (9) to  t h i s  p r o b l e m ) .  

I n  t h e  c a l c u l a t i o n  o f  t h e  t e m p e r a t u r e  f i e l d  i n d u c e d  by  l o c a l  h e a t i n g  o f  t h e  g e r m a n i u m  
s u r f a c e  we u s e d  t h e  f o l l o w i n g  d a t a  a t  a t e m p e r a t u r e  of  623~  w h e r e  c r y s t a l l i z a t i o n  o f  t h e  
h o m o e p i t a x i a l  f i l m  i s  i n d u c e d :  p = 5 . 3 2 4 . 1 0 3  kg/m 3 [ 8 ] ,  ~ = 4 . 0 2 6 o 1 0 1 W / m ~ 1 7 6  [ 9 ] .  v = 
4 . 8 , 1 0  ~ m / s e c  [ 9 ] ,  c = 3 . 6 4 5 , 1 0 2  J / k g ~ 1 7 6  [ 1 0 ] ,  a = 2 . 0 7 4  l 0  - 5  m 2 / s e c .  The s p e e d  o f  sound  
i n  g e r m a n i u m  was d e t e r m i n e d  f rom t h e  f o r m u l a  v = ( E / p ) 1 / 2  [ 1 1 ] .  The Y o u n g ' s  m o d u l u s  E was 
c a l c u l a t e d  w i t h  t h e  h e l p  of  t h e  r e l a t i o n  [12]  E = ( c 1 1 - c 1 2 )  ( c l l +  2 c 1 2 ) / ( c l l  + c 1 2 ) .  The 
v a l u e s  o f  c i j  w e r e  t a k e n  f rom [ 9 ] .  

F i g u r e  1 shows t h e  r e s u l t s  f o r  t h e  c a s e  w h e r e  a l l  o f  t h e  h e a t  r e l e a s e d  on  t h e  s u r f a c e  
o f  t h e  c r y s t a l  c o m p l e t e l y  p e n e t r a t e s  i n w a r d  a l o n g  t h e  n o r m a l  t o  t h e  s u r f a c e .  I n  t h i s  c a s e  
h e a t  l o s s e s  due  to  t h e r m a l  e x c h a n g e  w i t h  t h e  g a s  f l u x  a nd  due  to  r a d i a t i o n  c a n  be  n e g l e c t e d  
i n  t h e  f i r s t  a p p r o x i m a t i o n  b e c a u s e  t h e  t h e r m a l  c o n d u c t i v i t y  o f  a s e m i c o n d u c t o r  i s  l a r g e  
compared  to  t h a t  o f  a g a s  and  t h e  r a d i a t i o n  r a t e .  The maximum d e v i a t i o n  o f  t h e  l o c a l  
t e m p e r a t u r e  f rom 623~ was 5~  and  was o b s e r v e d  when T = 1 0 - 1 x - 1 0  - ~ 2  s e c ;  r = 10 -6  cm. 
At  a d i s t a n c e  o f  ~10 -4  cm ( t  = l 0  -7  s e c )  t h e  t e m p e r a t u r e  r e d u c e s  to  i t s  e q u i l i b r i u m  v a l u e .  
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NOTATION 

x, y, z, Cartesiancoordinates: L, characteristic spatial scale of temperature variations; 
v, mean propagation velocity of thermal phonons; ~p, Ip, relaxationtime and mean free path 
of a thermal phonon; T, characteristic time of temperature variations; a, thermal diffusivity; 
I, thermal conductivity; q, heat flux power; To, initial temperature of the surface of the 
crystal; Ko, MacDonald function; T, absolute temperature; AH, reaction heat; p, density of 
the material; C, heat capacity; cij , elastic coefficients. 
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SOME PROPERTIES OF THE HEAT-TRANSFER PROCESS IN A MOTIONLESS 

MEDIUM, TAKING ACCOUNT OF HEAT-FLUX RELAXATION 

E. I. Levanov and E. N. Sotskii UDC 536.24.02 

The solution of a hyperbolic system of neat-transfer equatlons in which account is 
taken of tne temperature dependence of the thermal conductivity and relaxation time 
of the heat flux is investigated. 

1 ~ A wide range of physical problems leads to the need for detailed study of heat 
{ransfer. The Fourier law is most often used to descrlbe this process 

W :  W r y - -  z g r a d T  (1) 

However, the l i m i t s  of  a p p l i c a b i l i t y  of  the  F o u r i e r  law a r e  p r e s c r i b e a  by the  r e q u i r e m e n t  
of sma l lness  of  the  f r e e - p a t h  l e n g t h  and time of t he  p a r t i c l e s  in  comparison wi th  the  c h a r a c -  
t e r i s t i c  s p a c e - t i m e  s c a l e s  of  t e m p e r a t u r e  v a r i a t i o n  and a r e  o f t e n  o v e r s t e p p e d  in  the  case  of 
i n t e n s e  he a t  t r a n s f e r .  Note a l s o  t h a t  the  hea t  f l u x  cannot  exceed the  maximum v a l u e  d e t e r -  
mined by the  c o n v e n t i o n a l  s i t u a t i o n  in  which a l l  t he  p a r t i c l e s  suddenly  change t h e i r  d i r e c -  
t i o n  of motion and move in the same direction. 

M. V. Keidysh Institute of Applied Mathematics, Academy of Sciences of the USSR, Moscow. 
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 50, No. 6, pp. 1017-1024, June, 1986. 
Original article submitted February I, 1985. 

0022-0841/86/5006-0733512.50 �9 1986 Plenum Publishing Corporation 733 


